<͵�ļ�����Ƶһ����������,����������

少妇爆乳无码专区网站_中文字幕久久久人妻无码_久久99热精品免费观看麻豆_亚洲爆乳AAA无码专区

15601689581
當前位置:主頁 > 產品展示 > 專用實驗設備 > 光電測試系統 > 時域熱反射測量系統 (TDTR 測試系統)

時域熱反射測量系統 (TDTR 測試系統)

簡要描(miao)述:我司(si)新推出的(de)時域熱(re)反射測(ce)量(liang)(liang)系統(tong)(tong)可用(yong)(yong)于測(ce)量(liang)(liang)金屬薄膜(mo)、塊體或(huo)液體的(de)熱(re)導率、界面熱(re)阻(zu)等(deng)多項熱(re)物性參數,薄膜(mo)測(ce)量(liang)(liang)厚度可達(da)納(na)米量(liang)(liang)級(ji)!在微納(na)結構新材料的(de)研發與分析等(deng)方面得以越來越廣泛(fan)的(de)應用(yong)(yong)。 時域熱(re)反射測(ce)量(liang)(liang)系統(tong)(tong) (TDTR 測(ce)試系統(tong)(tong))

  • 產(chan)品型號:
  • 廠商性質:代理商
  • 更新(xin)時間(jian):2021-09-10
  • 訪(fang)  問  量:2746
產品(pin)目錄(lu)

Product catalog

相關(guan)文章(zhang)

Related articles

詳細介紹
品牌其他品牌產地類別進口
應用領域醫療衛生,生物產業,電子厚度樣品測量nm級

時域熱反射測量系統 (TDTR 測試系統)飛秒激(ji)光時(shi)域熱(re)反射測量(liang)技(ji)(ji)術,即(ji)Time-domain Thermoreflectance, TDTR 是(shi)一(yi)種基于飛秒超快激(ji)光抽(chou)運探測(pump-probe)技(ji)(ji)術的導熱(re)測量(liang)技(ji)(ji)術。相比于其他導熱(re)測量(liang)技(ji)(ji)術,目前TDTR技(ji)(ji)術因其可以(yi)測量(liang)納米薄(bo)膜熱(re)導率和界(jie)面熱(re)阻以(yi)及非接觸式測量(liang)特(te)性(xing)而具(ju)有(you)*優勢。

 

我司新推出的時域熱(re)反射測(ce)(ce)量(liang)系統可用(yong)于測(ce)(ce)量(liang)金屬薄膜(mo)、塊體或液(ye)體的熱(re)導(dao)率(lv)、界(jie)面熱(re)阻等多項熱(re)物(wu)性(xing)參數(shu),薄膜(mo)測(ce)(ce)量(liang)厚度(du)可達納米量(liang)級!在微納結(jie)構新材料的研發與分析等方面得以越來越廣泛的應用(yong)。   

 

系統通(tong)過(guo)利用飛秒激光照(zhao)射(she)樣品(pin)表層金(jin)(jin)屬(shu)薄(bo)膜,令薄(bo)膜吸收能量并(bing)將其(qi)轉化為熱(re)(re)能, 從而(er)傳(chuan)導給樣品(pin),并(bing)隨時間(jian)(jian)尺度逐(zhu)漸向樣品(pin)傳(chuan)遞。金(jin)(jin)屬(shu)薄(bo)膜表面溫度隨時間(jian)(jian)回落,從而(er)影響到其(qi)反射(she)率。屆時再通(tong)過(guo)測量另一束探測激光的(de)(de)(de)反射(she)強度曲線(xian),通(tong)過(guo)后續(xu)一系列(lie)的(de)(de)(de)解調分析,即可得(de)到金(jin)(jin)屬(shu)薄(bo)膜溫度隨時間(jian)(jian)的(de)(de)(de)變化,進而(er)獲得(de)被測樣品(pin)的(de)(de)(de)導熱(re)(re)特性和(he)相關(guan)熱(re)(re)物性參數等。

 

時域熱反射測量系統 (TDTR 測試系統)產品特點:

超快動(dong)態測(ce)量過程,nm級厚度樣品測(ce)量

各項異性熱導率測量

納米材料(liao)界面熱阻材料(liao)(石墨烯(xi)合金(jin)等界面熱阻測量)

高(gao)溫高(gao)壓外場測量(Gpa 高(gao)壓環(huan)(huan)境  1000℃ 外場環(huan)(huan)境兼容)

 

 

本系統采用了長行(xing)程線性位(wei)移臺,可以實現較高時間分辨(bian)率(lv)的(de)熱響應測量;

雙波長激光分別(bie)進行泵浦和(he)探測,降(jiang)低(di)了(le)加熱(re)和(he)探測過程之間的干擾;

調制(zhi)和鎖相的(de)使(shi)用(yong)進一步保證(zheng)了微小熱響應信號的(de)捕捉和測量;

ccd顯微(wei)可視(shi)技術則(ze)能夠(gou)精確控制具有微(wei)觀結構樣品的測量(liang)。

 

關鍵核心技術:

高分辨率時(shi)域熱反射技術

雙波長抽運探測技術

調制鎖相放大技術

光路共享CCD顯微可視技(ji)術(shu)

高集(ji)成度(du)分體式模塊化設(she)計

高靈活度樣品位設計

 

可測材料:

塊體材料
薄膜材料

 

可測參數:

熱導率

熱擴散率

吸熱系數

界面熱阻

 

應用:

材料分析

薄膜的熱(re)物性參數測(ce)量

 

系統規格:

熱(re)導(dao)率測量(liang)范圍 0.1~2,000 W·m-1&middot;K-1

熱擴散率測量范圍0.05~1,000 mm2·s-1

可測薄膜厚度     >10 nm

吸熱系數 500~50,000 J·m-2·K-1·s-0.5

 

部分發表論文列表:

1.       Fangyuan Sun#, Teng Zhang#, Matthew M. Jobbins, Zhi Guo, Xueqiang Zhang, Zhongli Zheng, Dawei Tang, Sylwia Ptasinska, Tengfei Luo*, Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces, Advanced Materials, 2014, 26(35): 6093-6099 (SCI影響(xiang)因(yin)子25.809,JCR 1區,封面文章(zhang),科(ke)學網、中科(ke)院網報道(dao)文章(zhang))

2.       Kun Zheng#, Fangyuan Sun#, Jie Zhu*, Yongmei Ma*, Xiaobo Li, Dawei Tang, Fosong Wang, Xiaojia Wang, Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer, ACS Nano, 2016, 10(8): 7792-7798 (SCI影響因(yin)子13.903,JCR 1區,共同第一作者)

3.       Guo Chang, Fangyuan Sun*, Luhua Wang, Zhanxun Che, Xitao Wang, Jinguo Wang, Moon J. Kim, Hailong Zhang*, Regulated interfacial thermal conductance between cu and diamond by a TiC interlayer for thermal management applications, ACS Applied Materials & Interfaces, 2019, 11(29): 26507-26517 (SCI影響因子8.456,JCR 1區(qu))

4.       Jiaxin Lu#, Kunpeng Yuan#, Fangyuan Sun*, Kun Zheng*, Zhongyin Zhang, Jie Zhu, Xinwei Wang, Xiaoliang Zhang, Yafang Zhuang, Yongmei Ma*, Xinyu Cao, Jingnan Zhang, Dawei Tang, Self-assembled monolayer for polymer-semiconductor interface with improved interfacial thermal management, ACS Applied Materials & Interfaces, 2019, 10.1021/acsami.9b12006 (SCI影(ying)響因子8.456,JCR 1區)

5.       Xinwei Wang#, Zhe Chen#, Fangyuan Sun*, Hang Zhang, Yuyan Jiang, Dawei Tang*, Analysis of simplified heat transfer models for thermal property determination of nano-film by TDTR method, Measurement Science and Technology, 2018(29): 035902 (SCI影響因子1.861,JCR 2區)

6.       Fangyuan Sun#,*, Xinwei Wang#, Ming Yang, Zhe Chen, Hang Zhang*, Dawei Tang*, Simultaneous measurement of thermal conductivity and speci?c heat in a single TDTR experiment, International Journal of Thermophysics, 2018, 39(1): 5 (SCI影(ying)響因(yin)子0.853,JCR 4區)

7.       孫方(fang)遠, 祝捷*, 唐大偉, 飛秒激光(guang)抽運探測方(fang)法(fa)測量液體熱導率(lv), 科學通報, 2015, 60(14): 1320-1327 (中國(guo)工程熱物理學會傳熱傳質會議優秀論文)

8.       張航#, 王新偉(wei)(wei)#, 張中印(yin), 陳哲, 孫方遠(yuan)*, 唐大偉(wei)(wei)*, 基于(yu)TDTR方法的碳化硅低溫導熱(re)性能實驗研究(jiu), 工程熱(re)物理(li)學(xue)報, 2017, 38(7): 1415-1421 (EI索引(yin))

9.       Xinwei Wang, Zhongyin Zhang, Fangyuan Sun*, Xue Xiong, Zhe Chen, Hang Zhang, Yongfu Liang, Yuyan Jiang, Dawei Tang*, The influence of related parameters to thermal conductivity determination via time-domain thermoreflectance method under high pressure, International Heat Transfer Conference 16, 2018, 24: 8881-8889

10.    Xinwei Wang, Meiling Zhou, Weidong Xu, Zhongyin Zhang, Fangyuan Sun*, Thermal conductivity measurements of Al2O3/water nanofluids using time-domain thermoreflectance method and hot wire method, International Heat Transfer Conference 16, 2018, 24: 8711-8720

11.    Kun Zheng, Fangyuan Sun, Xia Tian, Jie Zhu*, Yongmei Ma*, Dawei Tang, Fosong Wang, Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion, ACS Applied Materials & Interfaces, 2015, 7(42): 23644-23649 (SCI影響因子8.456,JCR 1區)

12.    Teng Zhang, Ashley R. Gans-Forrest, Eungkyu Lee, Xueqiang Zhang, Chen Qu, Yunsong Pang, Fangyuan Sun, Tengfei Luo*, Role of hydrogen bonds in thermal transport across hard/soft material interfaces, ACS Applied Materials & Interfaces, 2016, 8(48): 33326-33334 (SCI影響因(yin)子8.456,JCR 1區)

13.    Guo Chang, Fangyuan Sun, Jialiang Duan, Zifan Che, Xitao Wang, Jinguo Wang, Moon J Kim, Hailong Zhang*, Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond, Acta Materialia, 2018, 160: 235-246 (SCI影響因(yin)子7.293,JCR 1區)

14.    Zhi Guo, Doyun Lee, Yi Liu, Fangyuan Sun, Anna Sliwinski, Haifeng Gao, Peter C. Burns, Libai Huang, Tengfei Luo*, Tuning the thermal conductivity of solar cell polymers through side chain engineering, Physical Chemistry Chemical Physics, 2014, 16(17): 7764-7771 (SCI影響因(yin)子(zi)3.567,JCR 2區(qu))

15.    Zhi Guo, Amit Verma, Xufei Wu, Fangyuan Sun, Austin Hickman, Takekazu Masui, Akito Kuramata, Masataka Higashiwaki, Debdeep Jena, and Tengfei Luo*, Anisotropic thermal conductivity in single crystal β-gallium oxide, Applied Physics Letters, 2015, 106(11): 111909 (SCI影響因子3.521,JCR 1區)

16.    Zhenbao Li, Yejie Cao, Wen Liu, Yiguang Wang*, Fangyuan Sun, Zhe Chen, Zhongyin Zhang, Enhanced irradiation resistance and thermal conductivity of SiC induced by the addition of carbon under Au2+ ion irradiation, Ceramics International, 2018, 44(7): 8521-8527 (SCI影響因(yin)子3.45,JCR 1區)

17.    Xin Jia, Junjun Wei*, Yuechan Kong, Chengming Li, Jinlong Liu, Liangxian Chen, Fangyuan Sun, Xinwei Wang, The influence of dielectric layer on the thermal boundary resistance of GaN-on-diamond substrate, Surface and Interface Analysis, 2019, 51(7): 783-790 (SCI影響(xiang)因子1.319,JCR 4區)

18.    Lidan Zhu, Fangyuan Sun, Jie Zhu*, Dawei Tang*, Yuhua Li, Chaohong Guo, Nano-metal film thermal conductivity measurement by using the femtosecond laser pump and probe method, Chinese Physics Letters, 2012, 29(6): 066301 (SCI影(ying)響因子1.066,JCR 3區)

19.    Ming Yang*, Fangyuan Sun, Ruining Wang, Hang Zhang*, Dawei Tang*, Strain modulation of electronic and heat transport properties of bilayer boronitrene, International Journal of Thermophysics, 2017, 38(10): 155 (SCI影響因子0.853,JCR 4區)

20.    朱麗丹, 孫(sun)方遠, 祝(zhu)捷*, 唐大(da)偉(wei)*, 飛秒激光(guang)抽運探測熱反射法對金屬(shu)納米薄膜(mo)超快非平衡傳(chuan)熱的研究, 物理學報, 2012, 61(13): 134402 (SCI影響因子0.644,JCR 4區)

21.    Dong Yu, Xuegong Hu*, Chaohong Guo, Dawei Tang, Fangyuan Sun, Linghong Hu, Fei Gao, Tao Zhao, Experimental investigation on fluid flow in an inclined open rectangular microgrooves heat sink with micro-PIV, ASME 2013 Heat Transfer Summer Conference, 2013: V004T15A002 (SCI索引)

22.    Juan Wen*, Dawei Tang, Zhicheng Wang, Jing Zhang, Yanjun Li, Fangyuan Sun, Numerical simulation of flow and heat transfer of a direct air-cooled condenser cell in a power plant, ASME 2013 Heat Transfer Summer Conference, 2013: V001T03A035 (SCI索(suo)引)

23.    朱麗(li)丹, 孫(sun)方遠(yuan), 祝(zhu)捷, 唐(tang)大偉*, 飛秒激光抽運-探(tan)測法對(dui)金納米薄(bo)膜非平衡傳熱的研究, 中國(guo)激光, 2012, 39(5): 0507001 (EI索引)

24.    陳哲, 孫方遠, 唐大(da)偉*, 鋁傳感層(ceng)蒸鍍(du)速率對(dui)飛(fei)秒激光(guang)抽運探測熱(re)反(fan)射方法(fa)測量熱(re)導率影響的研究, 熱(re)科(ke)學與技術(shu), 2018, 17(4): 290-295

25. &nbsp;  石宏開, 王新(xin)偉(wei), 鄭利兵*, 孫方遠, 劉珠明, 基(ji)于熱(re)(re)反(fan)射法的(de)微納(na)結構熱(re)(re)掃(sao)描(miao)技術研究, 熱(re)(re)科學與技術, 2019, 18(2): 94-99

26. &nbsp;  Zhongyin Zhang, Xinwei Wang, Kunpeng Yuan, Fangyuan Sun, Dawei Tang*, Thermal conductance measurement of Al-SiC interface at 4-300K using time-domain thermoreflectance technique, International Heat Transfer Conference 16, 2018, 24: 8826-8833

27.    Kun Zheng, Jiaxin Lu, Yafang Zhuang, Fangyuan Sun, Jie Zhu, Yongmei Ma, Dawei Tang, Tuning the thermal conductance of polymer and sapphire interface, International Heat Transfer Conference 16, 2018, 8: 2599-2605

 

 

 

產品咨詢

留言框

  • 產品:

  • 您的單位:

  • 您的姓名:

  • 聯系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請(qing)輸入計算(suan)結果(填(tian)寫(xie)阿(a)拉伯數字),如:三加四=7

昊量微信在線客服

昊量微信在線客服

版權所有(you) © 2024上海昊(hao)量光電設備有(you)限公司(si) 技術支持: Sitemap.xml